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ASYMPTOTICS OF MARKOV KERNELS AND THE TAIL CHAIN

SIDNEY I. RESNICK AND DAVID ZEBER

Abstract. An asymptotic model for extreme behavior of certain Markov chains is the “tail chain”.
Generally taking the form of a multiplicative random walk, it is useful in deriving extremal char-
acteristics such as point process limits. We place this model in a more general context, formulated
in terms of extreme value theory for transition kernels, and extend it by formalizing the distinc-
tion between extreme and non-extreme states. We make the link between the update function and
transition kernel forms considered in previous work, and we show that the tail chain model leads to
a multivariate regular variation property of the finite-dimensional distributions under assumptions
on the marginal tails alone.

1. Introduction

A method of approximating the extremal behavior of discrete-time Markov chains is to use
an asymptotic process called the tail chain under an asymptotic assumption on the transition
kernel of the chain. Loosely speaking, if the distribution of the next state converges under some
normalization as the current state becomes extreme, then the Markov chain behaves approximately
as a multiplicative random walk upon leaving a large initial state. This approach leads to intuitive
extremal models in such cases as autoregressive processes with random coefficients, which include a
class of ARCH models. The focus on Markov kernels was introduced by Smith [24]. Perfekt [18, 19]
extended the approach to higher dimensions, and Segers [23] rephrased the conditions in terms of
update functions.

Though not restrictive in practice, the previous approach tends to mask aspects of the processes’
extremal behaviour. Markov chains which admit the tail chain approximation fall into one of two
categories. Starting from an extreme state, the chain either remains extreme over any finite time
horizon, or will drop to a “non-extreme” state of lower order after a finite amount of time. The
latter case is problematic in that the tail chain model is not sensitive to possible subsequent jumps
from a non-extreme state to an extreme one. Previous developments handle this by ruling out
the class of processes exhibiting this behaviour via a technical condition, which we refer to as the
regularity condition. Also, most previous work has assumed stationarity, since interest focused on
computing the extremal index or deriving limits for the exceedance point processes, drawing on
the theory established for stationary processes with mixing by Leadbetter et al. [17]. However,
stationarity is not fundamental in determining the extremal behaviour of the finite-dimensional
distributions.

We place the tail chain approximation in the context of an extreme value theory for Markovian
transition kernels, which a priori does not necessitate any such restrictions on the class of processes
to which it may be applied. In particular, we introduce the concept of boundary distribution, which
controls tail chain transitions from non-extreme to extreme. Although distributional convergence
results are more naturally phrased in terms of transition kernels, we treat the equivalent update
function forms as an integral component to interfacing with applications, and we phrase relevant

Key words and phrases. Extreme values, multivariate regular variation, Markov chain, transition kernel, tail chain,
heavy tails.

S. I. Resnick and D. Zeber were partially supported by ARO Contract W911NF-10-1-0289 and NSA Grant H98230-
11-1-0193 at Cornell University.
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2 S. I. RESNICK AND D. ZEBER

assumptions in terms of both. While not making explicit a complete tail chain model for the class
of chains excluded previously, we demonstrate the extent to which previous models may be viewed
as a partial approximation within our framework. This is accomplished by formalizing the division
between extreme and non-extreme states as a level we term the extremal boundary. We show
that, in general, the tail chain approximates the extremal component, the portion of the original
chain having yet to cross below this boundary. Phrased in these terms, the regularity condition
requires that the distinction between the original chain and its extremal component disappears
asymptotically.

After introducing our extreme value theory for transition kernels, along with a representation in
terms of update functions, we derive limits of finite-dimensional distributions conditional on the
initial state, as it becomes extreme. We then examine the effect of the regularity condition on these
results. Finally, adding the assumption of marginal regularly varying tails leads to convergence
results for the unconditional distributions akin to regular variation.

1.1. Notation and Conventions. We review notation and relevant concepts. If not explicitly
specified, assume that any space S under discussion is a topological space paired with its Borel
σ-field of open sets B(S) to form a measurable space. Denote by K(S) the collection of its compact
sets; by C(S) the space of real-valued continuous, bounded functions on S; and by C+K(S) the space
of non-negative continuous functions with compact support. Weak convergence of probability
measures is represented by ⇒.

For a space E which is locally compact with countable base (for example, a subset of [−∞,∞]d),
M+(E) is the space of non-negative Radon measures on B(E); point measures consisting of single
point masses at x will be written as εx(·). A sequence of measures {µn} ⊂ M+(E) converges

vaguely to µ ∈ M+(E) (written µn
v→ µ) if

∫
E f dµn →

∫
E f dµ as n → ∞ for any f ∈ C+K(E).

The shorthand µ(f) =
∫
f dµ is handy. That the distribution of a random vector X is regularly

varying on a cone E ⊂ [−∞,∞]d\{0} means that tP[X/b(t) ∈ · ] v→ µ∗(·) in M+(E) as t→∞ for
some non-degenerate limit measure µ∗ ∈ M+(E) and scaling function b(t) → ∞. The limit µ∗ is
necessarily homogeneous in the sense that µ∗(c ·) = c−αµ∗(·) for some α > 0. The regular variation
is standard if b(t) = t.

If X = (X0, X1, X2, . . . ) is a (homogeneous) Markov chain and K is a Markov transition kernel,
we write X ∼ K to mean that the dependence structure of X is specified by K, i.e.

P[Xn+1 ∈ · |Xn = x] = K
(
x , ·

)
, n = 0, 1, . . . .

We adopt the standard shorthand Px[(X1, . . . , Xm) ∈ · ] = P[(X1, . . . , Xm) ∈ · |X0 = x]. Some
useful technical results are assembled in Section 8 (p. 21).

2. Extremal Theory for Markov Kernels

We begin by focusing on the Markov transition kernels rather than the stochastic processes they
determine, and introduce a class of kernels we term “tail kernels,” which we will view as scaling
limits of certain kernels. Antecedents include Segers’ [23] definition of “back-and-forth tail chains”
that approximate certain Markov chains started from an extreme value.

For a Markov chain X ∼ K on [0,∞), it is reasonable to expect that extremal behaviour of X
is determined by pairs (Xn, Xn+1), and one way to control such pairs is to assume that (Xn, Xn+1)
belongs to a bivariate domain of attraction (cf. [5, 24]). In the context of regular variation, writing

(2.1) tP

[
Xn

b(t)
∈ A0 ,

Xn+1

b(t)
∈ A1

]
=

∫
A0

K
(
b(t)u , b(t)A1

)
tP

[
Xn

b(t)
∈ du

]
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suggests combining marginal regular variation of Xn with a scaling kernel limit to derive extremal
properties of the finite-dimensional distributions (fdds) [18, 19, 23], and this is the direction we
take. We first discuss the kernel scaling operation.

For simplicity, we assume the state space of the Markov chain is [0,∞), although with suitable
modifications, it is relatively straightforward to extend the results to Rd. Henceforth G and H will
denote probability distributions on [0,∞).

2.1. Tail Kernels. The tail kernel associated with G, with boundary distribution H, is

(2.2) K∗
(
y , A

)
=

{
G(y−1A) y > 0

H(A) y = 0

for any measurable set A. Thus, the class of tail kernels on [0,∞) is parameterized by the pair of
probability distributions (G,H). Such kernels are characterized by a scaling property:

Proposition 2.1. A Markov transition kernel K is a tail kernel associated with some (G,H) if
and only if it satisfies the relation

(2.3) K
(
uy , A

)
= K

(
y , u−1A

)
when y > 0 for any u > 0, in which case G(·) = K(1 , ·). The property (2.3) extends to y = 0 iff
H = ε0.

Proof. If K is a tail kernel, (2.3) follows directly from the definition. Conversely, assuming (2.3),
for y > 0 we can write

K
(
y , A

)
= K

(
1 , y−1A

)
,

demonstrating that K is a tail kernel associated with K(1 , ·) (with boundary distribution H =
K(0 , ·)). To verify the second assertion, fixing u > 0, we must show that H(u−1·) = H(·) iff H = ε0.
On the one hand, we have ε0(u

−1A) = ε0(A). On the other, H(0,∞) = limn→∞H(n−1,∞) =
H(1,∞), so H(0, 1] = 0. A similar argument shows that H(1,∞) = 0 as well. �

We call the Markov chain T ∼ K∗ a tail chain associated with (G,H). Such a chain can be
represented as

(2.4) Tn = ξn Tn−1 + ξ′n 1{Tn−1=0} for n = 1, 2, . . . ,

where ξn
iid∼ G and ξ′n

iid∼ H are independent of each other and of T0. If H = ε0, then T becomes a
multiplicative random walk with step distribution G and absorbing barrier at {0}: Tn = T0 ξ1 · · · ξn.

2.2. Convergence to Tail Kernels. The tail chain approximates the behaviour of a Markov
chain X ∼ K in extreme states. Asymptotic results require that the normalized distribution of X1

be well-approximated by some distribution G when X0 is large, and we interpret this requirement
as a domain of attraction condition for kernels.

Definition. A Markov transition kernel K : [0,∞)×B[0,∞)→ [0, 1] is in the domain of attraction
of G, written K ∈ D(G), if as t→∞,

(2.5) K
(
t , t ·

)
⇒ G(·) on [0,∞].

Note that D(G) contains at least the class of tail kernels associated with G (i.e. with any boundary
distribution H). A simple scaling argument extends (2.5) to

(2.6) K
(
tu , t ·

)
⇒ G(u−1·) =: K∗

(
u , ·

)
, u > 0,

where K∗ is any tail kernel associated with G; this is the form appearing in (2.1). Thus tail kernels
are scaling limits for kernels in a domain of attraction. In fact, tail kernels are the only possible
limits:
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Proposition 2.2. Let K be a transition kernel and H be an arbitrary distribution on [0,∞). If
for each u > 0 there exists a distribution Gu such that K

(
tu , t ·

)
⇒ Gu(·) as t → ∞, then the

function K̂ defined on [0,∞)× B[0,∞) as

K̂
(
u , A

)
:=

{
Gu(A) u > 0

H(A) u = 0

is a tail kernel associated with G1.

Proof. It suffices to show that Gu(·) = G1(u
−1·) for any u > 0. But this follows directly from the

uniqueness of weak limits, since (2.6) shows that K(tu , t ·)⇒ G1(u
−1·). �

A version of (2.6) uniform in u is needed for fdd convergence results.

Proposition 2.3. Suppose K ∈ D(G), and K∗ is a tail kernel associated with G. Then, for any
u > 0 and any non-negative function ut = u(t) such that ut → u as t→∞, we have

(2.7) K
(
tut , t ·

)
⇒ K∗

(
u , ·

)
, (t→∞).

Proof. Suppose ut → u > 0. Observe that K(tut , t ·) = K(tut , (tut)u
−1
t ·), and put ht(x) = utx,

h(x) = ux. Writing Pt(·) = K(tut , tut ·), we have

K
(
tut , t ·

)
= Pt ◦ h−1t ⇒ G ◦ h−1 = G(u−1·) = K∗

(
u , ·

)
by [2, Theorem 5.5, p. 34]. �

The measure G controls X upon leaving an extreme state, and H describes the possibility of
jumping from a non-extreme state to an extreme one. The traditional assumption (2.5) provides
no information about H, and in fact (2.7) may fail if u = 0—see Example 6.2. However, the choice
of H cannot be ignored if 0 is an accessible point of the state space, especially for cases where
G({0}) = K∗(y , {0}) > 0. We propose pursuing implications of the traditional assumption (2.5)
alone, and will add conditions as needed to understand boundary behaviour of X.

Alternative, more general formulations of (2.5) include replacing K(t , t ·) with K(t , a(t) ·) or
K(t , a(t) ·+ b(t)) with appropriate functions a(t) > 0 and b(t), in analogy with the usual domains
of attraction conditions in extreme value theory. Indeed, the second choice coincides with the
original presentation by Perfekt [18], and relates to the conditional extreme value model [8, 13, 14].
For clarity, and to maintain ties with regular variation, we retain the standard choice a(t) = t,
b(t) = 0.

2.3. Representation. How do we characterize kernels belonging to D(G)? From (2.4), for chains
transitioning according to a tail kernel, the next state is a random multiple of the previous one,
provided the prior state is non-zero. We expect that chains transitioning according to K ∈ D(G)
behave approximately like this upon leaving a large state, and this is best expressed in terms of a
function describing how a new state depends on the prior one.

Given a kernel K, we can always find a sample space E, a measurable function ψ : [0,∞)×E→
[0,∞) and an E-valued random element V such that ψ(y, V ) ∼ K(y , · ) for all y. Given a random
variable X0, if we define the process X = (X0, X1, X2, . . . ) recursively as

Xn+1 = ψ(Xn, Vn+1), n ≥ 0,

where {Vn} is an iid sequence equal in distribution to V and independent of X0, then X is a Markov
chain with transition kernel K. Call the function ψ an update function corresponding to K. If in
addition K ∈ D(G), the domain of attraction condition (2.5) becomes

t−1ψ(t, V )⇒ ξ,
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where ξ ∼ G. Applying the probability integral transform or the Skorohod representation theorems
[3, Theorem 3.2, p. 6], [4, Theorem 6.7, p. 70], we get the following result.

Proposition 2.4. If K is a transition kernel, K ∈ D(G) if and only if there exists a measurable
function ψ∗ : [0,∞) × [0, 1] → [0,∞) and a random variable ξ∗ ∼ G on the uniform probability
space ([0, 1],B, λ) such that

(2.8) t−1ψ∗(t, u) −→ ξ∗(u) ∀u ∈ [0, 1]

as t→∞, and ψ∗is an update function corresponding to K in the sense that

λ
[
ψ∗(y, ·) ∈ A

]
= K

(
y , A

)
for measurable sets A.

Think of the update function as ψ∗(y, U) where U(u) = u is a uniform random variable on [0, 1].

Proof. If there exist such ψ∗ and ξ∗ satisfying (2.8) then clearly K ∈ D(G). Conversely, suppose
ψ(·, V ) is an update function corresponding to K. According to Skorohod’s representation theorem
(cf. Billingsley [4] p. 70, with the necessary modifications to allow for an uncountable index set),
there exists a random variable ξ∗ and a stochastic process {Y ∗t ; t ≥ 0} defined on the uniform
probability space ([0, 1],B, λ), taking values in [0,∞), such that

ξ∗ ∼ G , Y ∗0
d
= ψ(0, V ) , Y ∗t

d
= t−1ψ(t, V ) for t > 0,

and Y ∗t (u)→ ξ∗(u) as t→∞ for every u ∈ [0, 1]. Now, define ψ∗ : [0,∞)× [0, 1]→ [0,∞) as

ψ∗(0, u) = Y ∗0 (u) and ψ∗(t, u) = tY ∗t (u) , t > 0, ∀u ∈ [0, 1].

It is evident that λ[ψ∗(y, ·) ∈ A] = P[ψ(y, V ) ∈ A] for y ∈ [0,∞), so ψ∗ is indeed an update function
corresponding to K, and ψ∗ satisfies (2.8) by construction. �

Update functions corresponding to K are not unique, and some of them may fail to converge
pointwise as in (2.8). However (2.8) is convenient, and Proposition 2.4 shows that Segers’ [23]
Condition 2.2 in terms of update functions is equivalent to our weak convergence formulation
K ∈ D(G).

Pointwise convergence in (2.8) gives an intuitive representation of kernels in a domain of attrac-
tion.

Corollary 2.1. K ∈ D(G) iff there exists a random variable ξ ∼ G defined on the uniform
probability space, and a measurable function φ : [0,∞)× [0, 1]→ (−∞,∞) satisfying t−1φ(t, u)→ 0
for all u ∈ [0, 1] such that

(2.9) ψ(y, u) := ξ(u) y + φ(y, u)

is an update function corresponding to K.

Proof. If such ξ and φ exist, then t−1ψ(t, u) = ξ(u) + t−1φ(t, u) → ξ(u) for all u, so ψ satisfies
(2.8). The converse follows from (2.8). �

Many Markov chains such as ARCH, GARCH and autoregressive processes are specified by
structured recursions that allow quick recognition of update functions corresponding to kernels in
a domain of attraction. A common example is the update function ψ(y, (Z,W )) = Zy +W, which
behaves like ψ′(y, Z) = Zy when y is large—compare ψ′ to the form (2.4) discussed for tail kernels.
In general, if K has an update function ψ of the form

(2.10) ψ(y, (Z,W )) = Zy + φ(y,W )

for a random variable Z ≥ 0 and a random element W , where t−1φ(t, w) → 0 whenever w ∈ C
for which P[W ∈ C] = 1, then K ∈ D(G) with G = P[Z ∈ · ]. We will refer to update functions
satisfying (2.10) as being in canonical form.
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3. Finite-Dimensional Convergence and the Extremal Component

Given a Markov chain X ∼ K ∈ D(G), we show that the finite-dimensional distributions (fdds)
of X, started from an extreme state, converge to those of the tail chain T defined in (2.4). We
initially develop results that depend only on G (but not H), and then clarify what behaviour of X
is controlled by G and H respectively. We make explicit links with prior work that did not consider
the notion of boundary distribution.

If G({0}) = 0, the choice of H is inconsequential, since P
[
T eventually hits {0}

]
= 0 and T is

indistinguishable from the multiplicative random walk {T ∗n = T0ξ1 · · · ξn, n ≥ 0} (where T0 > 0
and {ξn} are iid ∼ G and independent of T0). In this case, assume without loss of generality
that H = ε0. However, if G({0}) > 0, any result not depending on H must be restricted to
fdds conditional on the tail chain not having yet hit {0}. For example, consider the trajectory of
(X1, . . . , Xm), started from X0 = t, through the region (t,∞)m−2× [0, δ]× (t,∞), where t is a high
level. The tail chain would model this as a path through (0,∞)m−2 × {0} × (0,∞), which requires
specifying H to control transitions away from {0}.

This raises the question of how to interpret the first hitting time of {0} for T in terms of the
original Markov chain X. Such hitting times are important in the study of Markov chain point
process models of exceedance clusters based on the tail chain. Intuitively, a transition to {0} by T
represents a transition from an extreme state to a non-extreme state by X. We make this notion
precise in Section 3.2 by viewing such transitions as downcrossings of a certain level we term the
“extremal boundary.”

We assume X is a Markov chain on [0,∞) with transition kernel K ∈ D(G), K∗ is a tail kernel
associated with G with unspecified boundary distribution H, and T is a Markov chain on [0,∞)
with kernel K∗. The finite-dimensional distributions of X, conditional on X0 = y, are given by

Py
[
(X1, . . . , Xm) ∈ dxm

]
= K

(
y , dx1

)
K
(
x , dx2

)
· · ·K

(
xm−1 , dxm

)
,

and analogously for T .

3.1. FDDs Conditional on the Intial State. Define the conditional distributions

(3.1) π(t)m
(
u , ·

)
= Ptu

[(
X1

t
, . . . ,

Xm

t

)
∈ ·
]

and πm
(
u , ·

)
= Pu

[
(T1, . . . , Tm) ∈ ·

]
, m ≥ 1,

on [0,∞)×B[0,∞]m. We consider when π
(t)
m ⇒ πm on [0,∞]m pointwise in u. If G({0}) = 0, this is

a direct consequence of the domain of attraction condition (2.5), but if G({0}) > 0, more thought
is required. We begin by restricting the convergence to the smaller space E′m := (0,∞]m−1× [0,∞].
Relatively compact sets in E′m are contained in rectangles [a,∞]× [0,∞], where a ∈ (0,∞)m−1.

Theorem 3.1. Let ut = u(t) be a non-negative function such that ut → u > 0 as t→∞.

(a) The restrictions to E′m,

(3.2) µ(t)m
(
u , ·

)
:= π(t)m

(
u , · ∩ E′m

)
and µm

(
u , ·

)
:= πm

(
u , · ∩ E′m

)
,

satisfy

(3.3) µ(t)m
(
ut , ·

) v−→ µm
(
u , ·

)
in M+(E′m) (t→∞).

(b) If G({0}) = 0, we have

(3.4) π(t)m
(
ut , ·

)
⇒ πm

(
u , ·

)
on [0,∞]m (t→∞).

Proof. The Markov structure suggests an induction argument facilitated by Lemma 8.2 (p. 21).
Consider (a) first. If m = 1, then (3.3) above reduces to (2.7). Assume m ≥ 2, and let f ∈ C+K(E′m).
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Writing E′m = (0,∞] × E′m−1, we can find a > 0 and B ∈ K(E′m−1) such that f is supported on
[a,∞]×B. Now, observe that

µ(t)m
(
ut , ·

)
(f) =

∫
(0,∞]

K
(
tut , tdx1

) ∫
E′m−1

K
(
tx1 , tdx2

)
· · ·K

(
txm−1 , tdxm

)
f(xm)

=

∫
(0,∞]

K
(
tut , tdx1

) ∫
E′m−1

µ
(t)
m−1

(
x1 , d(x2, . . . , xm)

)
f(xm).

Defining

ht(v) =

∫
E′m−1

µ
(t)
m−1

(
v , dxm−1

)
f(v,xm−1) and h(v) =

∫
E′m−1

µm−1
(
v , dxm−1

)
f(v,xm−1) ,

the previous expression becomes

µ(t)m
(
ut , ·

)
(f) =

∫
(0,∞]

K
(
tut , tdv

)
ht(v).

Now, suppose vt → v > 0 : we verify

(3.5) ht(vt) −→ h(v).

By continuity, we have f(vt,x
t
m−1) → f(v,xm−1) whenever xtm−1 → xm−1, and the induction

hypothesis provides µ
(t)
m−1(vt , ·)

v−→ µm−1(v , ·). Also, f(x, ·) has compact support B (without loss
of generality, µm−1(v , ∂B) = 0). Combining these facts, (3.5) follows from Lemma 8.2 (b). Next,
since the ht and h have common compact support [a,∞], and recalling from Propostion 2.3 that
K(tut , t ·)⇒ K∗(u , ·), Lemma 8.2 (a) yields

µ(t)m
(
ut , ·

)
(f) −→

∫
(0,∞]

K∗
(
u , dv

)
h(v) = µm

(
u , ·

)
(f).

Implication (b) follows from essentially the same argument. For m ≥ 2, suppose f ∈ C[0,∞]m.
Replacing µ by π and E′m−1 by [0,∞]m−1 in the definitions of ht and h, we have

π(t)m
(
ut , ·

)
(f) =

∫
[0,∞]

K
(
tut , tdv

)
ht(v).

This time Lemma 8.2 (a) shows that ht(vt) → h(v) if vt → v > 0, and since K∗(u , (0,∞]) = 1,
resorting to Lemma 8.2 (a) once more yields

π(t)m
(
ut , ·

)
(f) −→

∫
[0,∞]

K∗
(
u , dv

)
h(v) = πm

(
u , ·

)
(f). �

If G({0}) > 0, then K∗(u , (0,∞]) = 1−G({0}) < 1, and for (3.4) to hold would require knowing
the behaviour of ht(vt) when vt → 0 as well. Behaviour near zero is controlled by an asymptotic
condition related to the boundary distribution H. Previous work handled this using the regularity
condition discussed in Section 4.

3.2. The Extremal Boundary. The normalization employed in the domain of attraction condi-
tion (2.5) suggests that, starting from a large state t, the extreme states are approximately scalar
multiples of t. For example, we would consider a transition from t into (t/3, 2t] to remain extreme.
Thus, we think of states which can be made smaller than tδ for any δ, if t is large enough, as
non-extreme. In this context, the set [0,

√
t] would consist of non-extreme states.

Under (2.5), a tail chain path through (0,∞) models the original chain X travelling among
extreme states, and all of the non-extreme states are compacted into the state {0} in the state space
of T . Therefore, if X is started from an extreme state, the portion of the tail chain depending solely
on G is informative up until the first time X crosses down to a non-extreme state. If G({0}) = 0,
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such a transition would become more and more unlikely as the initial state increases in which case
G provides a complete description of the behaviour of X in any finite number of steps following a
visit to an extreme state (Theorem 3.1 (b)).

Drawing upon this interpretation, we develop a rigorous formulation of the distinction between
extreme and non-extreme states, and we recast Theorem 3.1 as convergence on the unrestricted
space [0,∞]m of the conditional fdds, given that X has not yet reached a non-extreme state.

Definition. Suppose K ∈ D(G). An extremal boundary for K is a non-negative function y(t)
defined on [0,∞), satisfying limt→∞ y(t) = 0 and

(3.6) K
(
t , t [0, y(t)]

)
−→ G({0}) as t→∞.

Such a function is guaranteed to exist by Lemma 8.5 (p. 23).
If G({0}) = 0, then y(t) ≡ 0 is a trivial choice. For any function 0 ≤ y(t) → 0, we have

lim supt→∞K(t , t [0, y(t)]) ≤ G({0}), so (3.6) is equivalent to

(3.7) lim inf
t→∞

K
(
t , t [0, y(t)]

)
≥ G({0}).

If y(t) is an extremal boundary, it follows that any function 0 ≤ ỹ(t)→ 0 with ỹ(t) ≥ y(t) for t ≥ t0
is also an extremal boundary for K. Taking ỹ(t) = ∨s≥t y(s) shows that without loss of generality,
we can assume y(t) to be non-increasing.

The extremal boundary has a natural formulation in terms of the update function. As in (2.10),
let ψ(y, (Z,W )) = Zy + φ(y,W ) be an update function in canonical form, where y is extreme. If
Z > 0 then the next state is approximately Zy, another extreme state. Otherwise, if Z = 0, the
next state is φ(y,W ), and a transition from an extreme to a non-extreme state has taken place.
This suggests choosing an extremal boundary whose order is between t and φ(t, w).

Proposition 3.1. Suppose ψ(y, (Z,W )) is an update function in canonical form as in (2.10). If
ζ(t) > 0 is a function on [0,∞) such that

(3.8) φ(t, w)/ζ(t) −→ 0

as t → ∞ whenever w ∈ B for which P[W ∈ B] = 1, then lim inft→∞K(t , [0, ζ(t)]) ≥ G({0}).
Provided limt→∞ ζ(t)/t = 0, an extremal boundary is given by y(t) := ζ(t)/t.

Thus if φ(t, w) = o(ζ(t)) and ζ(t) = o(t) then ζ(t)/t is an extremal boundary. For example, if
ψ(y, (Z,W )) = Zy+W , so that φ(t, w) = w, then choosing ζ(t) to be any function ζ(t)→∞ such
that ζ(t) = o(t) makes ζ(t)/t an extremal boundary. Choosing ζ(t) =

√
t, we find that y(t) = 1/

√
t

is an extremal boundary.

Proof. Since

P
[
ψ(t) ≤ ζ(t) , Z = 0

]
= P

[
φ(t,W ) ≤ ζ(t) , Z = 0

]
≥ P

[
|φ(t,W )| ≤ ζ(t) , Z = 0

]
≥ P

[
Z = 0

]
− P

[
|φ(t,W )|
ζ(t)

> 1

]
−→ P

[
Z = 0

]
,

we have
lim inf
t→∞

K
(
t , [0, ζ(t)]

)
= lim inf

t→∞
P
[
ψ(t) ≤ ζ(t)

]
≥ P

[
Z = 0

]
. �

We will need an extremal boundary for which (3.6) still holds upon replacing the initial state t
with tut, where ut → u > 0. Compare the following extension with Proposition 2.3.

Proposition 3.2. If K ∈ D(G), then there exists an extremal boundary y∗(t) such that

(3.9) K
(
tut , t [0, y∗(t)]

)
−→ G({0}) as t→∞

for any non-negative function ut = u(t)→ u > 0.
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We will refer to y∗ as a uniform extremal boundary.

Proof. Let y(t) be an extremal boundary for K. As a first step, fix u0 > 1, and suppose u−10 <

u < u0. Define ỹ(t) = u0 y(tu−10 ). Now, if ut → u, then y{u}(t) := ut y(tut) satisfies (3.9), since

K
(
tut , t [0, y{u}(t)]

)
= K

(
tut , tut [0, y(tut)]

)
−→ G({0}).

Here y{u} depends on the choice of function ut. However, since we eventually have u−10 < ut < u0
for t large enough, it follows that ỹ(t) > y{u}(t) for such t. Hence, ỹ(t) satisfies (3.9) for any ut → u

with u−10 < u < u0.
Next, we remove the restriction in u0 via a diagonalization argument. For k = 2, 3, . . . , let yk(t)

be extremal boundaries such that K(tut , t [0, yk(t)]) → G({0}) whenever ut → u for u ∈ (k−1, k),
and put y0 = y1 = y. Next, define the sequence {(sk, xk) : k = 0, 1, . . . } inductively as follows.
Setting s0 = 0 and x0 = y0(1), choose sk ≥ sk−1 +1 such that yj(t) ≤ k−1∧xk−1 for all j = 0, . . . , k
whenever t ≥ sk, and put xk = max{yj(sk) : j = 0, . . . , k}. Note that xk ≤ k−1 ∧ xk−1, so xk ↓ 0,
and sk ↑ ∞. Finally, set

y∗(t) =
∞∑
k=0

xk 1[sk, sk+1)(t).

Observe that 0 ≤ y∗(t) ↓ 0, and suppose ut → u > 0. Then u ∈ (k−10 , k0) for some k0, so
K(tut , t [0, yk0(t)]) → G({0}), and for k ≥ k0, our construction ensures that whenever sk ≤ t <
sk+1, we have yk0(t) ≤ yk0(sk) ≤ xk = y∗(t). Therefore, y∗(t) ≥ yk0(t) for t ≥ sk0 , so y∗ satisfies
(3.9). �

Henceforth, we assume any K ∈ D(G) is accompanied by a uniform extremal boundary denoted
by y(t), and we consider extreme states on the order of t to be (ty(t),∞]. If G({0}) = 0, then
all positive states are extreme states. We now use the extremal boundary to reformulate the
convergence of Theorem 3.1 on the larger space [0,∞]m. Put E′m(t) = (y(t),∞]m−1 × [0,∞], so

that E′m(t) ↑ E′m = (0,∞]m−1×[0,∞]. Recall the notation µ
(t)
m and µ∗m from (3.1), (3.2) in Theorem

3.1 (p. 6).

Theorem 3.2. Let ut = u(t) be a non-negative function such that ut → u > 0 as t→∞. Taking

µ̃(t)m
(
u , ·

)
= π(t)m

(
u , · ∩ E′m(t)

)
,

we have

µ̃(t)m
(
ut , ·

) v−→ µm
(
u , ·

)
in M+[0,∞]m (t→∞).

Proof. Note that we can just as well write µ̃
(t)
m (u , ·) = µ

(t)
m (u , · ∩ E′m(t)). Suppose m ≥ 2 and let

f ∈ C+K [0,∞]m. For δ > 0, define Aδ = (δ,∞]m−1× [0,∞], and choose δ such that µm(u , ∂Aδ) = 0.
On the one hand, for large t we have

µ̃(t)m
(
ut , ·

)
(f) =

∫
[0,∞]m

f(x) 1E′m(t)(x) µ(t)m
(
ut , dx

)
≥
∫
E′m

f(x) 1Aδ(x) µ(t)m
(
ut , dx

)
−→

∫
E′m

f(x) 1Aδ(x) µm
(
u , dx

)
as t→∞ by Lemma 8.3 (p. 22). Letting δ ↓ 0 yields

(3.10) lim inf
t→∞

µ̃(t)m
(
ut , ·

)
(f) ≥ µm

(
u , ·

)
(f)
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by monotone convergence. On the other hand, fixing δ, we can decompose the space according to
the first downcrossing of δ:

(3.11) µ̃(t)m
(
ut , ·

)
(f) =

∫
[0,∞]m

f(x) 1Aδ(x) µ̃(t)m
(
ut , dx

)
+

m−1∑
k=1

∫
[0,∞]m

f(x) 1Akδ
(x) µ̃(t)m

(
ut , dx

)
,

where Akδ = (δ,∞]k−1 × [0, δ] × [0,∞]m−k. On the subsets Akδ we appeal to the bound on f , say
M , to obtain ∫

[0,∞]m
f(x) 1Akδ

(x) µ̃(t)m
(
ut , dx

)
≤M µ̃(t)m

(
ut , A

k
δ

)
.

Now,

µ̃(t)m
(
ut , A

k
δ

)
≤ µ(t)k

(
ut , (δ,∞]k−1 × (y(t), δ]

)
(3.12)

= µ
(t)
k

(
ut , (δ,∞]k−1 × [0, δ]

)
− µ(t)k

(
ut , (δ,∞]k−1 × [0, y(t)]

)
.

Considering the second term, we have

µ
(t)
k

(
ut , (δ,∞]k−1 × [0, y(t)]

)
=

∫
[0,∞]

K
(
tut , tdx1

)
1(δ,∞](x1) · · ·

∫
[0,∞]

K
(
txk−2 , tdxk−1

)
1(δ,∞](xk−1) K

(
txk−1 , t [0, y(t)]

)
=

∫
E′k−1

µ
(t)
k−1
(
ut , dxk−1

)
ht(xk−1),

where

ht(xk−1) = K
(
txk−1 , t [0, y(t)]

)
1(δ,∞]k−1(xk−1).

Moreover, if xtk−1 → xk−1 ∈ (δ,∞]k−1, then

ht(x
t
k−1) = K

(
txtk−1 , t [0, y(t)]

)
1(δ,∞]k−1(xtk−1) −→ G({0}) 1(δ,∞]k−1(xk−1),

using the fact that y(t) is a uniform extremal boundary. Since µk−1(u , ∂(δ,∞]k−1) = 0 without
loss of generality by choice of δ, we conclude that

µ
(t)
k

(
ut , (δ,∞]k−1 × [0, y(t)]

)
−→ G({0}) · µk−1

(
u , (δ,∞]k−1

)
= µk

(
u , (δ,∞]k−1 × {0}

)
as t→∞. Now, let us return to (3.12). Given any ε > 0, by choosing δ small enough, we can make

µ
(t)
k

(
ut , (δ,∞]k−1 × (y(t), δ]

)
−→ µk

(
u , (δ,∞]k−1 × [0, δ]

)
− µk

(
u , (δ,∞]k−1 × {0}

)
≤ µk

(
u , (0,∞]k−1 × [0, δ]

)
− µk

(
u , (δ,∞]k−1 × {0}

)
< µk

(
u , (0,∞]k−1 × {0}

)
+
ε

2
−
(
µk
(
u , (0,∞]k−1 × {0}

)
− ε

2

)
= ε,

i.e.

(3.13) lim sup
t→∞

µ̃(t)m
(
ut , A

k
δ

)
< ε,

for k = 1, . . . ,m− 1. Therefore, (3.11) implies that, given ε′ > 0,

lim sup
t→∞

µ̃(t)m
(
ut , ·

)
(f) ≤

∫
[0,∞]m

f(x) 1Aδ(x) µm
(
u , dx

)
+M

m−1∑
k=1

lim sup
t→∞

µ̃(t)m
(
ut , A

k
δ

)
< µm

(
u , ·

)
(f) + ε′

for small enough δ. Combining this with (3.10) yields the result. �
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3.3. The Extremal Component. Having thus formalized the distinction between extreme and
non-extreme states, we return to the question of phrasing a fdd limit result for X when H is
unspecified. The extremal boundary allows us to interpret the first hitting time of {0} by the tail
chain as approximating the time of the first transition from extreme down to non-extreme. In this
terminology, Theorem 3.2 provides a result, given that such a transition has yet to occur.

Define the first hitting time of a non-extreme state

τ(t) = inf
{
n ≥ 0 : Xn ≤ ty(t)

}
.

For a Markov chain started from tut, where ut → u > 0, we have tut > y(t) for large t, so τ(t) is
the first downcrossing of the extremal boundary.

For the tail chain T , put τ∗ = inf{n ≥ 0 : Tn = 0}. Given T0 > 0, write τ∗ = inf{n ≥ 1 : ξn = 0},
where {ξn} ∼ G are iid and independent of T0, i.e. τ∗ follows a Geometric distribution with
parameter p = G({0}). Thus, P[τ∗ = m] = p(1 − p)m−1 for m ≥ 1 if p > 0, and P[τ∗ = ∞] = 1 if
p = 0. Theorem 3.2 becomes

(3.14) Ptut
[
t−1Xm ∈ · , τ(t) ≥ m

] v−→ Pu
[
Tm ∈ · , τ∗ ≥ m

]
,

implying that τ∗ approximates τ(t):

(3.15) Ptut
[
τ(t) ∈ ·

]
⇒ P

[
τ∗ ∈ ·

]
, (t→∞, ut → u > 0).

So if G({0}) > 0, X takes an average of approximately G({0})−1 steps to return to a non-extreme
state. but if G({0}) = 0, Ptut [τ1 ≤ m] → 0 for any m ≥ 1 so starting from a larger and larger
initial state, it will take longer and longer for X to cross down to a non-extreme state.

Let T ∗ be the tail chain associated with (G, ε0). For {ξn} ∼ G iid and independent of T ∗0 ,

(3.16) T ∗n = T ∗0 ξ1 · · · ξn.

We restate (3.14) in terms of a process derived from X, called the extremal component of X, whose
fdds converge weakly to those of T ∗. The extremal component is the part of X whose asymptotic
behavior is controlled by G alone.

Definition. The extremal component of X relative to t is the process X(t) defined for t > 0 as

X(t)
n = Xn · 1{n<τ(t)} , n = 0, 1, . . . .

Observe that X(t) is a Markov chain on [0,∞) with transition kernel

K(t)
(
x , A

)
=

{
K
(
x , A ∩ (ty(t),∞]

)
+ ε0(A) ·K

(
x , [0, ty(t)]

)
x > ty(t)

ε0(A) x ≤ ty(t)
.

It follows that K(t)(t , t ·)⇒ G as t→∞, and additionally that K(t)(t , {0})→ G({0}).
The relation between the component processes X(t), T ∗ and the complete ones is

Ptut
[
t−1X(t)

m ∈ ·
∣∣ τ(t) > m

]
= Ptut

[
t−1Xm ∈ ·

∣∣ τ(t) > m
]

and

Pu
[
T ∗m ∈ ·

∣∣ τ∗ > m
]

= Pu
[
Tm ∈ ·

∣∣ τ∗ > m
]
.

Theorem 3.3. Let ut = u(t) ≥ 0 satisfy ut → u > 0 as t→∞. Then on [0,∞]m,

π̃(t)m
(
ut , ·

)
:= Ptut

[(
X

(t)
1

t
, . . . ,

X
(t)
m

t

)
∈ ·
]
⇒ Pu

[
(T ∗1 , . . . , T

∗
m) ∈ ·

]
(t→∞).
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Proof. Suppose m ≥ 2 and f ∈ C[0,∞]m, and assume first that f ≥ 0. Then f ∈ C+K [0,∞]m as
well, since the space is compact. Recall the notation of Theorem 3.2. Conditioning on τ(t), we can
write

π̃(t)m
(
ut , ·

)
(f) =

∫
(0,∞]m

f(xm) π̃(t)m
(
ut , dxm

)
+

m∑
k=1

∫
(0,∞]k−1×{0}m−k+1

f(xm) π̃(t)m
(
ut , dxm

)
=

∫
(0,∞]m

f(xm) π̃(t)m
(
ut , dxm

)
+

m∑
k=1

∫
(0,∞]k−1×{0}

f(xk, 0, . . . , 0) π̃
(t)
k

(
ut , dxk

)
by the Markov property. Since

π̃(t)m
(
ut , · ∩ (0,∞]m

)
= Ptut

[
t−1X(t)

m ∈ · , τ(t) > m
]

= Ptut
[
t−1Xm ∈ · ∩ (y(t),∞]m

]
= µ̃

(t)
m+1

(
ut , · × [0,∞]

)
,

the first term becomes

µ̃
(t)
m+1

(
ut , ·

)
(f) −→ µm+1

(
u , ·

)
(f) =

∫
(0,∞]m

f(xm) πm
(
u , dxm

)
=

∫
(0,∞]m

f(xm) Pu
[
T ∗m ∈ dxm

]
as t→∞. Next, for any A ⊂ [0,∞]k measurable, write A0 = {xk−1 : (xk−1 , 0) ∈ A} ⊂ [0,∞]k−1,
and observe that

π̃
(t)
k

(
ut , A∩ (0,∞]k−1 × {0}

)
= Ptut

[
t−1X

(t)
k−1 ∈ A0 ∩ (0,∞]k−1 , X

(t)
k = 0

]
= Ptut

[
t−1Xk−1 ∈ A0 ∩ (y(t),∞]k−1 , t−1Xk ≤ y(t)

]
= µ̃

(t)
k

(
ut , A0 × [0,∞]

)
− µ̃(t)k+1

(
ut , A0 × [0,∞]2

)
.

Applying this reasoning to the terms in the summation yields∫
[0,∞]k

f(xk−1, 0, . . . , 0) µ̃
(t)
k

(
ut , dxk

)
−
∫
[0,∞]k+1

f(xk−1, 0, . . . , 0) µ̃
(t)
k+1

(
ut , dxk+1

)
−→

∫
[0,∞]k

f(xk−1, 0, . . . , 0) µk
(
u , dxk

)
−
∫
[0,∞]k+1

f(xk−1, 0, . . . , 0) µk+1

(
u , dxk+1

)
=

∫
(0,∞]k−1×{0}

f(xk, 0, . . . , 0) πk
(
u , dxk

)
=

∫
(0,∞]k−1×{0}m−k+1

f(xm) Pu
[
T ∗m ∈ dxm

]
.

Combining these limits shows that Etutf
(
t−1X

(t)
m

)
−→ Euf(T ∗m), as t → ∞. Finally, if f is not

non-negative, then write f = f+ − f− . Since each of f+ and f− is non-negative, bounded, and
continuous, we can apply the above argument to each. �

4. The Regularity Condition

Previous work on the tail chain derives fdd convergence of X to T ∗ under a single assump-
tion analogous to our domain of attraction condition (2.5). As we observed in Section 3.1, when
G({0}) = 0, fdd convergence of {t−1X} follows directly, but when G({0}) > 0, it was common to
assume an additional technical condition which made (2.5) imply fdd convergence to T ∗ as well.
This condition, which we refer to as the “regularity condition,” is an asymptotic convergence as-
sumption prescribing the boundary distribution to be H = ε0. We consider equivalences between
different forms appearing in the literature, in terms of both kernels and update functions, and show
that, under the regularity condition, the extremal behaviour of X is asymptotically the same as
that of its extremal component X(t).
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In cases where G({0}) > 0, Perfekt [18, 19] requires that

(4.1) lim
δ↓0

lim sup
t→∞

sup
u∈[0,δ]

K
(
tu , (t,∞]

)
= 0,

while Segers [23] stipulates that the chosen update function corresponding to K must be of at most
linear order in the initial state:

(4.2) lim sup
t→∞

sup
0≤y≤t

t−1ψ(y, v) <∞, (v ∈ B0, P[V ∈ B0] = 1).

Smith [24] used a variant of (4.1). We deem a formulation in terms of distributional convergence
to be instructive in our context.

Definition. A Markov transition kernel K ∈ D(G) satisfies the regularity condition if

(4.3) K
(
tut , t ·

)
⇒ ε0(·)

on [0,∞] as t→∞ for any non-negative function ut = u(t)→ 0.

Note that in (2.7) (p. 4), we had ut → u > 0. We interpret (4.3) as designating the boundary
distribution H to be ε0.

We now consider the relationships between (4.1), (4.2) and (4.3) , and propose an intuitive
equivalent for update functions in canonical form.

Proposition 4.1. Suppose K ∈ D(G), and let ψ(·, V ) be an update function corresponding to K
such that

(4.4) t−1ψ(t, v) −→ ξ(v)

whenever v ∈ B for which P[V ∈ B] = 1, and ξ ◦ V ∼ G. Then:

(a) Condition (4.1) is necessary and sufficient for K to satisfy the regularity condition (4.3).
(b) Condition (4.2) is sufficient for K to satisfy the regularity condition (4.3).
(c) If ψ is in canonical form, i.e.

ψ(y, (Z,W )) = Zy + φ(y,W ),

then ψ satisfies (4.2) if and only if φ(·, w) is bounded on any neighbourhood of 0 for each
w ∈ C, a set for which P[W ∈ C] = 1.

Proof. (a) Assume (4.1), and suppose ut → 0. We show K(tut , t(x,∞])→ 0 for any x > 0. Write

ω(t, δ) = sup
u∈[0,δ]

K
(
tu , (t,∞]

)
.

Let ε > 0 be given, and choose δ small enough that lim supt→∞ ω(t, δ) < ε/2. Then for t large
enough that ut < δx, we have

K
(
tut , t(x,∞]

)
≤ sup

u∈[0,δx]
K
(
tu , t(x,∞]

)
= ω(tx, δ) < lim sup

t→∞
ω(t, δ) + ε/2

for t large enough. Our choice of δ implies that K(tut , t(x,∞]) < ε.
Conversely, assume that K satisfies (4.3) but that (4.1) fails. Choose ε > 0 and a sequence

δn ↓ 0 such that lim supt→∞ ω(t, δn) ≥ ε for n = 1, 2, . . . . Then for each n we can find a sequence
tnk →∞ as k →∞ such that ω(tnk , δn) ≥ ε for each k. Diagonalize to find k1 < k2 < · · · such that
sn = tnkn →∞ and ω(sn, δn) ≥ ε for all n. Finally, for n = 1, 2, . . . choose un ∈ [0, δn] such that

K
(
snun , (sn,∞]

)
> ω(sn, δn)− ε/2,

and put u(t) =
∑

n un 1[sn,sn+1)(t). Clearly u(t) → 0, but K(snu(sn) , (sn,∞]) ≥ ε/2 for all n,
contradicting (4.3).
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(b) Write M(v) = lim supt sup0≤y≤t t
−1ψ(y, v). Since

sup
0≤y≤t

t−1ψ(y, v) = sup
0≤y≤δ

ψ(tδ−1y, v)

tδ−1
δ−1

for δ > 0, we have

lim sup
t→∞

sup
0≤y≤δ

t−1ψ(ty, v) = δM(v).

Now, suppose ut → 0. Given any δ > 0 we have

t−1ψ(tut, v) ≤ sup
0≤y≤δ

t−1ψ(ty, v)

provided t is large enough, so lim supt t
−1ψ(tut, v) ≤ δM(v). Consequently, lim supt t

−1ψ(tut, v) = 0
for every v such that M(v) <∞. Under (4.2), this means that P

[
t−1ψ(tut, V )→ 0

]
= 1, implying

(4.3).
(c) Suppose first that χw(a) = sup0≤y≤a φ(y, w) < ∞ for all a > 0, whenever w ∈ C. Fixing

w ∈ C and z ≥ 0, note that

sup
0≤y≤t

t−1ψ(y, (z, w)) ≤ z + sup
0≤y≤t

t−1φ(y, w),

and observe for any a > 0 that

sup
0≤y≤t

t−1φ(y, w) ≤
(

sup
0≤y≤a

t−1φ(y, w)
)
∨
(

sup
a≤y≤t

y−1φ(y, w)
)
≤ t−1χw(a) ∨

(
sup
a≤y

y−1φ(y, w)
)
.

Choosing a large enough that supa≤y y
−1φ(y, w) ≤ 1, say, it follows that

lim sup
t→∞

sup
0≤y≤t

t−1ψ(y, (z, w)) ≤ z + 1,

so v = (z, w) ∈ B0. Therefore P[(Z,W ) ∈ B0] ≥ P[Z ≥ 0, W ∈ C] = 1.
Conversely, suppose there is a set D with P[W ∈ D] > 0 such that w ∈ D implies χw(a) = ∞

for some 0 < a < ∞. Since sup0≤y≤t t
−1ψ(y, (z, w)) ≥ t−1χw(t), we have [0,∞) × D ⊂ Bc

0,
contradicting (4.2). �

The exclusion of necessity from part (b) results from the fact that a kernel K does not uniquely
specify an update function ψ. Even when K satisfies the regularity condition (4.3), it may be
possible to choose a nasty update function ψ which satisfies (4.4), but not (4.2). However, in such
cases there may exist a different update function ψ′ corresponding to K which does satisfy (4.2).

Here is an example of such a situation. We exhibit an update function ψ for which (i) (4.4) holds;
(ii) (4.2) fails because condition (c) in Proposition 4.1 fails; but yet (iii) the corresponding kernel
satisfies the regularity condition (4.3). Furthermore, we present a different choice of update function
corresponding to the same kernel which satisfies (4.2). Define ψ(y, V = (Z,W )) = Zy + φ(y,W ),
where

φ(y, w) =
∞∑
k=1

k · 1{yw=1/k}

and W ∼ U(0, 1). (i) Since φ(t, w) = 0 for t > 1/w, it is clear that ψ satisfies (4.4) with ξ = Z.
(ii) Observe that for any w ∈ (0, 1), φ(·, w) is unbounded on the interval [0, 1]. Therefore, by part
(c) of Proposition 4.1, (4.2) cannot hold for ψ. (iii) However, the corresponding kernel does satisfy
the regularity condition (4.3). Suppose ut → 0 and a > 0 is arbitrarily large. Write

P
[
t−1ψ(tut, (Z,W )) > x

]
= P

[
Zut + t−1φ(tut,W ) > x

]
≤ P

[
t−1φ(tut,W ) > x′

]
+ P[Z > a],
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choosing 0 < x′ < x − aut. Since for any t, {w : φ(tut, w) > tx′} ⊂ {(tutk)−1 : k = 1, 2, . . . }, a
set of measure 0 with respect to P[W ∈ · ], (4.3) follows by letting a→∞. On the other hand, the
update function ψ′(y, Z) = Zy does satisfy (4.2), and for any y,

P
[
ψ′(y, Z) 6= ψ(y, (Z,W ))

]
= P

[
W ∈ {(yk)−1 : k = 1, 2, . . . }

]
= 0,

so ψ′ does indeed correspond to K.
The regularity condition (4.3) restricts attention to Markov chains for which the probability

of returning to an extreme state in the next m steps after falling below the extremal boundary
is asymptotically negligible. For such chains, as well as those for which y(t) ≡ 0 is an extremal
boundary for K, X has the same asymptotic behaviour as its extremal component, as described
next.

Theorem 4.1. Suppose X ∼ K with K ∈ D(G), and let ρ be a metric on Rm. If y(t) ≡ 0 is an
extremal boundary for K, or if K satisfies the regularity condition (4.3), then for any ε > 0 we
have

(4.5) Ptut

[
ρ
(X(t)

m

t
,
Xm

t

)
> ε

]
−→ 0 (t→∞, ut → u > 0).

Consequently,

(4.6) Ptut

[(
X1

t
, . . . ,

Xm

t

)
∈ ·
]
⇒ Pu

[
(T ∗1 , . . . , T

∗
m) ∈ ·

]
(t→∞, ut → u > 0).

First let us extend the regularity condition to higher-order transition kernels.

Lemma 4.1. If K satisfies (4.3), then so do the m-step transition kernels Km.

Proof. This is established by induction. Let ut → 0 and f ∈ C[0,∞]. For m ≥ 2, we have

Km
(
tut , ·

)
(f) =

∫
[0,∞]

Km−1(tut , tdv) ∫
[0,∞]

K
(
tv , tdx

)
f(x).

Assume that Km−1(tut , t ·) ⇒ ε0; (4.3) implies that
∫
K(tvt , tdx) f(x) → f(0) whenever vt → 0.

Therefore, by Lemma 8.2 (a) (p. 21), we conclude that

Km
(
tut , ·

)
(f) −→ f(0) = ε0(f). �

Proof of Theorem 4.1. Suppose ε > 0 and ut → u > 0. Write

Ptut
[
ρ(t−1X(t)

m , t−1Xm) > ε
]

=
m∑
k=1

Ptut
[
ρ(t−1X(t)

m , t−1Xm) > ε , τ(t) = k
]
.

Since Xj = X
(t)
j while j < τ(t), for the k-th summand to converge to 0, it is sufficient that

Ptut
[
|X(t)

j /t−Xj/t| > δ , τ(t) = k
]

= Ptut
[
Xj/t > δ , τ(t) = k

]
−→ 0

for j = k, . . . ,m and any δ > 0. If j = k, we have

Ptut
[
Xj/t > δ , τ(t) = k

]
≤ Ptut

[
Xk/t > δ , Xk/t ≤ y(t)

]
= 0

for large t. For j > k, recalling the notation of Theorem 3.2,

Ptut
[
Xj/t > δ , τ(t) = k

]
=

∫
E′k(t)

1[0,y(t)](xk)Ptut
[
Xj/t > δ

∣∣Xk/t = xk
]
Ptut

[
Xk/t ∈ dxk

]
=

∫
[0,∞]k

Ptxk
[
Xj−k > tδ

]
1[0,y(t)](xk) µ̃

(t)
k

(
ut , dxk

)
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using the Markov property. We claim that this intergral → 0 as t → ∞. If y(t) ≡ 0, this

follows directly. Otherwise, recall that µ̃
(t)
k (ut , ·)

v→ µk(u , ·), and consider ht(xk) = Ptxk [Xj−k >

tδ] 1[0,y(t)](xk). Suppose x(t) → x ∈ [0,∞]k. If xk > 0, then ht(x
(t)) = 0 for large t because y(t)→

0. Otherwise, if xk = 0, we have ht(x
(t))→ 0 since Lemma 4.1 implies that P

tx
(t)
k

[Xj−k > tδ]→ 0

as t→∞. Lemma 8.2 (b) establishes (4.5); (4.6) follows by Slutsky’s theorem. �

Therefore, X converges to T ∗ in fdds under (a) G({0}) = 0, (b) G({0}) > 0 combined with (4.3),
or (c) G({0}) > 0 combined with the extremal boundary y(t) ≡ 0. In either case, we will be able

to replace the extremal component X(t) with the complete chain X in the results of Sections 5.1
and 5.2. However, that y(t) ≡ 0 is an extremal boundary, and consequently that (4.6) holds, does
not imply the regularity condition to hold, regardless of G({0}); in particular, a kernel for which
G({0}) = 0 need not satisfy (4.3). This is illustrated in Example 6.3.

5. Convergence of the Unconditional FDDs

5.1. Effect of a Regularly Varying Initial Distribution. So far our convergence results re-
quired that the initial state become large, and the only distributional assumption was that the
transition kernel K determining X be attracted to some distribution G. To obtain a result for the
unconditional distribution of (X0, . . . , Xm), we require an additional assumption about how likely
the initial observation X0 is to be large. Using Lemma 8.4, the results of the previous sections
extend to multivariate regular variation on the cone Em = (0,∞]× [0,∞]m when the distribution
of X0 has a regularly varying tail. This cone is smaller than the cone [0,∞]m+1\{0} traditionally
employed in extreme value theory, because the kernel domain of attraction condition (2.5) is unin-
formative when the initial state is not extreme. This is analogous to the setting of the Conditional
Extreme Value Model considered in [8, 13].

Proposition 5.1. Assume X ∼ K with K ∈ D(G), and X0 ∼ H, where H is a distribution on
[0,∞) with a regularly varying tail. This means that as t→∞, for some scaling function b(t)→∞,

tH
(
b(t) ·

) v−→ να(·) in M+(0,∞],

where να(x,∞] = x−α and α > 0. Define the measure ν∗ on Em = (0,∞]× [0,∞]m by

(5.1) ν∗
(
dx0, dxm

)
= να(dx0)Px0

[
(T ∗1 , . . . , T

∗
m) ∈ dxm

]
.

Then, for m = 1, 2, . . ., the following convergences take place as t→∞:

(a) In M+((0,∞]m × [0,∞]),

tP
[
b(t)−1(X0 , X1 , . . . , Xm) ∈ · ∩ (0,∞]m × [0,∞]

] v−→ ν∗
(
· ∩ (0,∞]m × [0,∞]

)
.

(b) In M+(Em),

tP
[
b(t)−1(X

(b(t))
0 , X

(b(t))
1 , . . . , X(b(t))

m ) ∈ ·
] v−→ ν∗(·).

(c) If either G({0}) = 0, y(t) ≡ 0 is an extremal boundary, or K satisfies the regularity
condition (4.3), then in M+(Em),

tP
[
b(t)−1(X0 , X1 , . . . , Xm) ∈ ·

] v−→ ν∗(·).
(d) In M+(0,∞],

tP
[
X0/b(t) ∈ dx0 , τ(b(t)) ≥ m

] v−→
(
1−G({0})

)m−1 · να(dx0).

Remark. These convergence statements may be reformulated equivalently as, say,

P
[
b(t)−1(X0, X1, . . . , Xm) ∈ ·

∣∣X0 > b(t)
]
⇒ P

[
(T ∗0 , T

∗
1 , . . . , T

∗
m) ∈ ·

]
,

where T ∗0 ∼ Pareto(α). This is the form considered by Segers [23].
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Proof. Apply Lemma 8.4 (p. 22) to the results of Theorems 3.1, 3.3 and 4.1, and (3.15). �

In the case m = 1, E1 is a rotated version of Eu used in the conditional extreme value model in
[8, 9] and the limit can be expressed as

ν∗
(
(x0,∞]× [0, x1]

)
=

∫ ∞
x0

να(du)P [ξ ≤ x1/u] = x−α0 P
[
ξ ≤ x1/x0

]
− x−α1 Eξα1{ξ≤x1/x0}

for (x0, x1) ∈ (0,∞]× [0,∞], where ξ ∼ G (with Eξα ≤ ∞). Since

ν∗
(
(x0,∞]× {0}

)
= x−α0 P[ξ = 0] and ν∗

(
(0,∞]× (x1,∞]

)
= x−α1 Eξα,

sets on the x0-axis incur mass proportional to G({0}), and sets bounded away from this axis are
weighted accordng to Eξα. A consequence of the second observation is that

lim inf
t→∞

tP
[
X1/b(t) > x

]
≥ Eξα · x−α.

Thus, knowledge concerning the tail behaviour of X1 imposes a restriction on the distributions G

to which K can be attracted via the α-th moment. For example, if tP[X1/b(t) ∈ ·]
v→ να, then

we must have Eξα ≤ 1; this property will be examined further in the next section and appears in
various forms in Segers [23] and Basrak and Segers [1], in the stationary setting.

5.2. Joint Tail Convergence. What additional assumptions are necessary for convergences (b)
and (c) of the previous result to take place on the larger cone E∗m = [0,∞]m+1\{0}? This was
considered by Segers [1, 23] for stationary Markov chains. In (b), the dependence on the extremal
threshold and hence on t means we are in the context of a triangular array and not, strictly speaking,
in the setting of joint regular variation. However, the result is still useful, for example, to derive a
point process convergence via the Poisson transform [21, p. 183].

As a first step, we characterize convergence on the larger cone by decomposing it into smaller,
more familiar cones. This is similar to Theorem 6.1 in [23] and one of the implications of Theorem
2.1 in [1]. As a convention in what follows, set [0,∞]0 × A = A. Also, recall the notation Em =
(0,∞]× [0,∞]m.

Proposition 5.2. Suppose Y t = (Yt,0 , Yt,1 , . . . , Yt,m) is a random vector on [0,∞]m+1 for each
t > 0. Then there exists a non-null Radon measure µ∗ on E∗m = [0,∞]m+1\{0} such that

(5.2) tP
[
(Yt,0 , Yt,1 , . . . , Yt,m) ∈ ·

] v−→ µ∗(·) in M+(E∗m) (t→∞)

if and only if for j = 0, . . . ,m there exist Radon measures µj on Ej = (0,∞]× [0,∞]j, not all null,
such that

(5.3) tP
[
(Yt,j , . . . , Yt,m) ∈ ·

] v−→ µm−j(·) in M+(Em−j).

The relation between the limit measures is the following:

µm−j(·) = µ∗
(
[0,∞]j × ·

)
on Em−j

for j = 0, . . . ,m, and

µ∗
(
[0,x]c

)
=

m∑
j=0

µm−j
(
(xj ,∞]× [0, xj+1]× · · · × [0, xm]

)
for x ∈ E∗m.

Furthermore, given j ∈ {0, . . . ,m − 1}, if A ⊂ [0,∞]m−j\{0}m−j is relatively compact, then
µm−j((0,∞]×A) <∞.
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Proof. Assume first that (5.2) holds. Fixing j ∈ {0, . . . ,m}, define µm−j(·) := µ∗([0,∞]j × · ) (i.e.
µm = µ∗). Let A ⊂ Em−j be relatively compact with µm−j(∂A) = 0. Then A∗ = [0,∞]j × A
is relatively compact in E∗m, and ∂E∗mA

∗ = [0,∞]j × ∂Em−jA, so µ∗(∂E∗mA
∗) = µm−j(∂A) = 0.

Therefore,

tP
[
(Yt,j , . . . , Yt,m) ∈ A

]
= tP

[
(Yt,0 , . . . , Yt,m) ∈ A∗

]
−→ µ∗(A∗) = µm−j(A),

establishing (5.3).
Conversely, suppose we have (5.3) for j = 0, . . . ,m. For x ∈ (0,∞]m+1, define

h(x) =
m∑
j=0

µm−j
(
(xj ,∞]× [0, xj+1]× · · · × [0, xm]

)
.

Decompose [0,x]c as a disjoint union

(5.4) [0,x]c =

m⋃
j=0

[0,∞]j × (xj ,∞]× [0, xj+1]× · · · × [0, xm] ,

and observe that at points of continuity of the limit,

(5.5) tP
[
Y t ∈ [0,x]c

]
=

m∑
j=0

tP
[
(Yt,j , . . . , Yt,m) ∈ (xj ,∞]× [0, xj+1]× · · · × [0, xm]

]
−→ h(x).

Hence, (5.2) holds with the limit measure µ∗ defined by µ∗
(
[0,x]c

)
= h(x). Indeed, given f ∈

C+K(E∗m) we can find δ > 0 such that xδ = (δ, . . . , δ) is a continuity point of h and f is supported
on [0,xδ]

c. Therefore,

tEf(Y t) ≤ sup
x∈E∗m

f(x) · sup
t>0

tP
[
Y t ∈ [0,xδ]

c
]
<∞,

implying that the set
{
tP[Y t ∈ · ] ; t > 0

}
is relatively compact in M+(E∗m). Furthermore, if

tk P[Y tk ∈ · ] → µ and sk P[Y sk ∈ · ] → µ′ as k → ∞, then µ = µ′ = µ∗ on sets [0,x]c which are
continuity sets of µ∗ by (5.5). This extends to measurable rectangles in E∗m bounded away from 0
whose vertices are continuity points of h, leading us to the conclusion that µ = µ′ = µ∗ on E∗m.

Moreover, since we can decompose [0,x]c for any x ∈ E∗m as in (5.4), it is clear that µ∗ is non-null
iff not all of the µj are null.

Finally, for 1 ≤ j ≤ m − 1, if A ⊂ [0,∞]m−j\{0}m−j is relatively compact, then it is contained
in [(0, . . . , 0), (xj+1, . . . , xm)]c for some (xj+1, . . . , xm) ∈ (0,∞]m−j . Applying (5.4) once again, we
find that

µm−j
(
(0,∞]×A

)
= µ∗

(
[0,∞]j × (0,∞]×A

)
≤

m∑
k=j+1

µ∗
(
[0,∞]j+1 × [0,∞]k−j−1 × (xk,∞]× [0, xk+1]× · · · × [0, xm]

)
=

m∑
k=j+1

µm−k
(
(xk,∞]× [0, xk+1]× · · · × [0, xm]

)
<∞. �

Consequently, the extension of the convergences in Proposition 5.1 to the larger cone E∗m follows
from regular variation of the marginal tails.

Theorem 5.1. Suppose X ∼ K ∈ D(G), and let b(t)→∞ be a scaling function and α > 0. Then

(5.6) tP
[
b(t)−1(X

(b(t))
0 , X

(b(t))
1 , . . . , X(b(t))

m ) ∈ ·
] v−→ µ∗(·) in M+(E∗m) (t→∞),
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where
µ∗
∣∣
Em(dx0, dx) = να(dx0)Px0

[
(T ∗1 , . . . , T

∗
m) ∈ dxm

]
= ν∗(dx0, dx),

if and only if

(5.7) tP
[
X

(b(t))
j /b(t) ∈ ·

] v−→ cj να(·)

in M+(0,∞], with c0 = 1 and (Eξ α)j ≤ cj <∞ for j = 1, . . . ,m.

Proof. Assume first that (5.6) holds. It follows that

tP
[
X0 > b(t)x] −→ ν∗((x,∞]× [0,∞]m) = x−α

for x > 0. Hence, b(t) ∈ RV1/α, so by (5.6) again, we have for j ≥ 1

tP
[
X

(b(t))
j > b(t)x

]
−→ µ∗([0,∞]j × (x,∞]× [0,∞]m−j) = cj x

−α,

and

cj ≥ µ∗((0,∞]× [0,∞]j−1 × (1,∞]× [0,∞]m−j) =

∫
(0,∞]

να(du) P
[
ξ1 · · · ξj > u−1]

= E(ξ1 · · · ξj)α = (Eξα)j .

Conversely, suppose that (5.7) holds for j = 0, . . . ,m. Lemma 8.4 implies that in M+(Em−j),

tP
[
b(t)−1(X

(b(t))
j , . . . , X(b(t))

m ) ∈ (dx0, dx)
] v−→ cj να(dx0)Px0

[
(T ∗1 , . . . , T

∗
m−j) ∈ dx

]
=: µm−j

(
(dx0, dx)

)
by the Markov property, and Proposition 5.2 yields (5.6), with µ∗|Em(·) = µm(·) = ν∗(·). �

At the end of Section 4, cases were outlined in which we could replace X
(b(t))
j by Xj . Theorem

5.1 is most striking for these since it shows that for a Markov chain whose kernel is in a domain
of attraction, to obtain joint regular variation of the fdds it is enough to know that the marginal
tails are regularly varying. In particular, if X has a regularly varying stationary distribution then
the fdds are jointly regularly varying. This result was presented by Segers [23], and Basrak and
Segers [1] showed that for a general stationary process, joint regular variation of fdds is equivalent
to the existence of a “tail process” which reduces to the tail chain in the case of Markov chains.
However, what Proposition 5.1 emphasizes is that it is the marginal tail behaviour alone, rather
than stationarity, which provides the link with joint regular variation.

Theorem 5.1 also extends the observation made in Section 5.1 that knowledge of the marginal
tail behaviour for a Markov chain whose kernel is in a domain of attraction constrains the class
of possible limit distributions G via its moments. If a particular choice of regularly varying initial

distribution leads to tP[Xj > b(t) · ] v→ ajνα(·), then we have Eξα ≤ a1/jj . In particular, if X admits
a stationary distribution whose tail is RV−α, then Eξα ≤ 1.

6. Examples

Our first example illustrates the main results.

Example 6.1. Let V = (Z, W ) be any random vector on [0,∞)×R. Consider the update function
ψ(y, V ) = (Zy +W )+ and its canonical form

ψ(y, V ) = Zy + φ(y,W ) = Zy +
(
W 1{W>−Zy} − Zy 1{W≤−Zy}

)
.

For y > 0, the transition kernel has the form K(y , (x,∞)) = P [Zy +W > x]. Since t−1ψ(t, V ) =
(Z+ t−1W )+ → Z a.s., we have K ∈ D(G) with G = P[Z ∈ · ]. Furthermore, using Proposition 3.1,
the function γ(t) ≡

√
t is of larger order than φ(t, w), so y(t) = 1/

√
t is an extremal boundary. Since
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φ(·, w) is bounded on neighbourhoods of 0, Proposition 4.1 (c) implies K satisfies the regularity
condition (4.3). Consequently, from Theorem 4.1, we obtain fdd convergence of t−1X to T ∗ as in
(4.6). �

If K does not satisfy the regularity condition (4.3), Theorem 4.1 may fail to hold and starting
from tu, t−1X may fail to converge to T ∗ started from u.

Example 6.2. Let V = (Z, W, W ′) be any non-degenerate random vector on [0,∞)3, and consider
the Markov chain determined by the update function

ψ(y, V ) = Zy +W y−1 1{y>0} +W ′ 1{y=0}.

For y > 0, the transition kernel is K(y , (x,∞)) = P[Zy + Wy−1 > x] and since t−1ψ(t, V ) =
Z + Wt−2 → Z a.s., we have K ∈ D(G) with G = P[Z ∈ · ]. Furthermore, using Proposition 3.1,
the function γ(t) ≡ 1 is of larger order than φ(t, w), so y(t) = 1/t is an extremal boundary.

However, note that φ(y, (W,W ′)) = Wy−11{y>0}+W ′1{y=0} is unbounded near 0, implying that
Segers’ boundedness condition (4.2) does not hold. In fact, our form of the regularity condition
(4.3) fails for K. Indeed,

K
(
tut , t(x,∞)

)
= P[Ztut +W/(tut) > tx] = P[Zut +W/(t2ut) > x].

Choosing ut = t−2 yields K(tut , t(x,∞))→ P[W > x]. For appropriate x, this shows (4.3) fails.
Not only does (4.3) fail but so does Theorem 4.1, since the asymptotic behaviour of X is not the

same as that of X(t). We show directly that the conditional fdds of t−1X fail to converge to those of
T ∗. The idea is that if Xk < y(t) = t−1, there is a positive probability that Xk+1 > t. We illustrate
this for m = 2. Take f ∈ C[0,∞]2 and u > 0. Observe if X0 = tu > 0, from the definition of ψ,
X1 = Z1tu+W1/(tu) and X2 = Z2X1 + (W2/X1)1{X1>0}+W ′1{X1=0}. Furthermore, on {Z1 > 0},
we have X1 > 0 and X2 = Z2X1+W2/X1. On {Z1 = 0,W1 > 0}, X1 > 0 and X2 = Z2X1+W2/X1.
On {Z1 = 0,W1 = 0}, we have X1 = 0 and X2 = W ′. Therefore

Etuf(X1/t, X2/t) = Etuf(X1/t, X2/t) 1{Z1>0} + Etuf(X1/t, X2/t) 1{Z1=0,W1>0}

+ Etuf(X1/t, X2/t) 1{Z1=0,W1=0} = A+B + C.

For A, as t→∞, we have

A = Ef
(
Z1u+W1/(t

2u), Z2[Z1u+W1/(t
2u)] +W2/[Z1t

2u+W1u
−1]
)
1{Z1>0}

−→ Ef(Z1u, Z1Z2u) 1{Z1>0},

while for B we obtain for t→∞,

B = Ef(W1/t
2u, Z2W1/(t

2u) +W2u/W1) 1{Z1=0,W1>0} −→ Ef(0, uW2/W1) 1{Z1=0,W1>0}.

Finally for C,

C = Ef(0, W ′2/t) 1{Z1=0,W1=0} = P[Z1 = 0,W1 = 0]Ef(0, W ′2/t) −→ P[Z1 = 0,W1 = 0] f(0, 0).

Observe that limt→∞[A+B + C] 6= Euf(T ∗1 , T
∗
2 ) = Ef(uZ1, uZ1Z2). �

In the final example, the conditional distributions of t−1X converge to those of the tail chain
T ∗, even though the regularity condition does not hold. This includes cases for which G({0}) = 0
and G({0}) > 0 with extremal boundary y(t) ≡ 0.

Example 6.3. Let {(ξj , ηj), j ≥ 1} be iid copies of the non-degenerate random vector (ξ, η) on
[0,∞)2. Taking V = (ξ, η), consider a Markov chain which transitions according to the update
function

ψ(y, V ) = ξ
(
y + y−1

)
1{y>0} + η 1{y=0} = ξ y +

(
ξ y−1 1{y>0} + η 1{y=0}

)
,
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where the last expression is the canonical form. For y > 0, the transition kernel is

K
(
y , [0, x]

)
= P

[
ξ(y + y−1) ≤ x

]
= P

[
ξ ≤ x/(y + y−1)

]
.

For t > 0, t−1ψ(t, V ) = ξ(1 + t−2) → ξ a.s., so K ∈ D(G) with G = P[ξ ∈ · ]. Note that
φ(y, V ) = ξy−1 1{y>0}+η 1{y=0} is unbounded near 0, implying that Segers’ boundedness condition
(4.2) does not hold. Also, our regularity condition (4.3) fails for K. To see this, write

K
(
tut , t(x,∞)

)
= P

[
ξ > x/(ut + (t2ut)

−1)
]
.

Fix x so that P[ξ > x] > 0 and choose ut = t−2. This yields ut + (t2ut)
−1 = 1 + t−2, implying that

K
(
tut , t(x,∞)

)
= P

[
ξ > x/(1 + t−2)

]
≥ P[ξ > x] > 0,

so (4.3) fails for K. However, since K(t , {0}) = P[ξ = 0] = G({0}), the choice y(t) ≡ 0 satisfies
the definition of an extremal boundary (3.6), even if G({0}) > 0. This leads to fdd convergence of
Ptu[t−1X ∈ · ] to Pu[T ∗ ∈ · ], and thus we learn that the conclusion (4.6) of Theorem 4.1 may hold
without (4.3) being true.

We prove the fdd convergence for m = 2. For u > 0, and X0 = tu, we have X1 = ξ1(tu+ (tu)−1)
and X2 = ξ2(X1+X−11 ) 1{X1>0}+η2 1{X1=0}. On {X1 > 0} = {ξ1 > 0} we have X2 = ξ2(X1+X−11 ).
On {X1 = 0} = {ξ1 = 0}, we have X2 = η2. Thus, as t→∞,

Etuf(X1/t, X2/t) 1{X1>0} = Etuf
(
ξ1[u+ (t2u)−1], ξ2ξ1[u+ (t2u)−2] + ξ2/(ξ1[t

2u+ 1/u])
)
1{X1>0}

−→ Ef(ξ1u, ξ1ξ2u) 1{ξ1>0},

while
Etuf(X1/t, X2/t) 1{X1=0} = Ef(0, η2/t) 1{ξ1=0} −→ P[ξ1 = 0] f(0, 0).

We conclude that
Etuf(X1/t, X2/t) −→ Ef(uξ1, uξ1ξ2) = Euf(T ∗1 , T

∗
2 ). �

7. Concluding Remarks

We have thus placed the traditional tail chain model for the extremes of a Markov chain in
a more general context through the introduction of the boundary distribution H as well as the
extremal boundary. A common application of the tail chain model is in deriving the weak limits
of exceedance point processes for X [1, 18, 22]. We will shortly use our results to develop a
detailed description of the clustering properties of extremes of Markov chains by means of such point
processes. Furthermore, as we have not employed stationarity in our finite-dimensional results, we
propose to substitute the inherent regenerative structure of a Harris recurrent Markov chain for
the traditional assumption of stationarity. Also, it would be interesting to explore the implications
of choices of H other than ε0.

8. Appendix: Technical Lemmas

This section collects lemmas needed to prove convergence of integrals of the form
∫
fn dµn,

assuming that fn → f and µn → µ in their respective spaces. An example is the second continuous
mapping theorem [2, Theorem 5.5, p. 34].

Lemma 8.1. Assume E and E′ are complete separable (cs) metric spaces, and for n ≥ 0, hn :
E → E′ are measurable. Put A = {x ∈ E : hn(xn) → h0(x) whenever xn → x}. If Pn, n ≥ 0
are probability measures on E with Pn ⇒ P0, and hn → h0 almost uniformly in the sense that
P (A) = 1, then Pn ◦ h−1n ⇒ P0 ◦ h−10 in E′.

The result provides a way to handle the convergence of a family of integrals.

Lemma 8.2. In addition to the assumptions of Lemma 8.1, require E′ = R and {hn, n ≥ 0} is
uniformly bounded, so that supn≥0 supx∈E |hn(x)| <∞.
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(a) We have ∫
E
hn dPn −→

∫
E
h0 dP0.

(b) Suppose additionally that E is locally compact with a countable base (lccb), and µn
v→ µ0 in

M+(E) with µ0(A
c) = 0. If there exists a compact set B ∈ K(E) with µ0(∂B) = 0 such that

hn(x) = 0, n ≥ 0 whenever x 6∈ B (i.e. B is a common compact support of each hn), then∫
E
hn dµn −→

∫
E
h0 dµ0.

Proof. (a) If Xn ∼ Pn for n ≥ 0, then hn(Xn) ⇒ h0(X0). The uniform boundedness of the hn
guarantees that Ehn(Xn)→ Eh0(X0).

(b) View B as a compact subspace of E inheriting the relative topology. Then, assuming
µ(B) > 0 to rule out a trivial case, define probabilities on B by Pn(·) = µn( · ∩B)/µn(B), n ≥ 0.

Since µn( ·∩B)
v−→ µ0( ·∩B) by Proposition 3.3 in [12], and B is compact, we get Pn ⇒ P0. Denote

by h′n, n ≥ 0, the restriction of hn to B. Observe that for any x ∈ A ∩B, we have h′n(xn)→ h′(x)
whenever xn → x in B, and P (Ac ∩B) ≤ µ(Ac)/µ(B) = 0. Therefore, apply part (a) to obtain∫

E
hn dµn =

∫
E
hn 1B dµn = µn(B)

∫
B
h′n dPn −→ µ0(B)

∫
B
h′0 dP0 =

∫
E
h0 dµ0. �

A convenient specialization of Lemma 8.2 (b) is the following.

Lemma 8.3. Suppose E is lccb and µn
v→ µ in M+(E). If f : E → R is continuous and bounded,

and B ∈ E is relatively compact with µ(∂B) = 0, then∫
B
f dµn −→

∫
B
f dµ.

Take hn = f1B for n ≥ 0. Since f1B is continuous except possibly on ∂B, we have µ(Ac) ≤
µ(∂B) = 0.

The next result is used to extend convergence of substochastic transition functions to multivariate
regular variation on a larger space.

Lemma 8.4. Let E ⊂ [0,∞]m and E′ ⊂ [0,∞]m
′

be two nice (lccb) spaces. Suppose for t ≥ 0

that {p(t)( · , · )}t≥0, are substochastic transition functions on E × B(E′). This means p(t)(· , B)

is a measurable function for any fixed B ∈ B(E′), p(t)(x , ·) is a measure for any x ∈ E, and

supt≥0 supu∈E p
(t)(u , E′) ≤ 1. Assume there is a set A ⊂ E such that

p(t)
(
ut , ·

) v−→ p(0)
(
u , ·

)
in M+(E′) (t→∞)

whenever ut → u in E and u ∈ A. Suppose also that {ν(t)}t≥0 are measures on E such that

ν(0)(Ac) = 0, and ν(t)
v→ ν(0) in M+(E). Then, defining measures µ(t) for t ≥ 0 on E× E′ as

µ(t)
(
du, dx

)
= ν(t)(du)p(t)

(
u , dx

)
,

we have

µ(t)
v−→ µ(0) in M+(E× E′) (t→∞).

Proof. Let f ∈ C+K(E × E′); without loss of generality assume f is supported on K × K ′, where
K ∈ K(E) and K ′ ∈ K(E′). We have∫

E×E′
µ(t)(du, dx) f(u, x) =

∫
E
ν(t)(du)

∫
E′
p(t)
(
u , dx

)
f(u, x).
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For t ≥ 0, write

ϕt(u) =

∫
E′
p(t)
(
u , dx

)
f(u, x)

and suppose ut → u0 with u0 ∈ A; we verify that ϕt(ut)→ ϕ0(u0). Writing gt(x) = f(ut, x), t ≥ 0,
we have gt(xt)→ g0(x0) whenever xt → x0 ∈ E′ by the continuity of f . Also, the gt are uniformly
bounded by the bound on f and gt(x) = 0 for all t whenever x /∈ K ′. Furthermore, without loss of

generality we can assume that p(0)(u , ∂K ′) = 0. Now apply Lemma 8.2 (b) to obtain

ϕt(ut) =

∫
E′
p(t)
(
ut , dx

)
gt(x) −→

∫
E′
p(0)
(
u , dx

)
g0(x) = ϕ0(u).

Since the p(t) are substochastic, and ϕt(u) = 0 for all t whenever u /∈ K, the ϕt are uniformly
bounded by the bound on f . Assume similarly that ν(∂K) = 0, and recall that ν(Ac) = 0. Apply
Lemma 8.2 (b) once more to conclude as t→∞ that∫

E×E′
µ(t)(du, dx) f(u, x) =

∫
E
ν(t)(du) ϕt(u) −→

∫
E
ν(0)(du) ϕ0(u) =

∫
E×E′

µ(0)(du, x) f(u, x). �

We conclude this section with a result used to verify the existence of the extremal boundary.

Lemma 8.5. Suppose Pt, t ≥ 0 are probability measures on a cs metric space E such that Pt ⇒ P0,
and let A ⊂ E be measurable. Then there exists a sequence of sets At ↓ A such that Pt(At)→ P0(A).

Remark. Note that if P (∂A) = 0 then we can take At = A. In the case of distribution functions
Ft ⇒ F on Rm, taking A = (−∞,x] and metric ρ = ρ∞ shows that for any x ∈ Rm there exists
xt ↓ x such that Ft(xt)→ F (x).

Proof. Let ρ be a metric on E, and consider sets Aδ = {x : ρ(x,A) ≤ δ}. Recall that P0(∂Aδ) = 0
for all but a countable number of choices of δ, since F (δ) = P0(Aδ) − P0(A) is a distribution
function. First choose {δk : k = 1, 2, . . . } such that 0 < δk+1 ≤ δk ∧ 1/(k + 1) and P0(∂Aδk) = 0

for all k. Next, let s0 = 0 and take sk ≥ sk−1 + 1, k = 1, 2, . . . such that Pt(Aδk) > P0(A) − 1/k

whenever t ≥ sk; this is possible since Pt(Aδk)→ P0(Aδk) ≥ P0(A) for all k. Finally, for t > 0 set

A(t) = Aδ1 1(0,s1)(t) +
∞∑
k=1

Aδk 1[sk,sk+1)(t).

We claim that A(t) ↓ A and that Pt(A(t)) → P0(A) as t → ∞. It is clear that A(t) ⊃ A(t′) for
t ≤ t′, and ∩tA(t) = ∩k Aδk = A. On the one hand, for large t we have A(t) ⊂ Aδk for any k, so

lim sup
t→∞

Pt(A(t)) ≤ lim sup
t→∞

Pt(Aδk) ≤ P0(Aδk).

Letting k →∞ shows that lim supt Pt(A(t)) ≤ P0(A). On the other hand, if k(t) denotes the value
of k for which sk ≤ t < sk+1, then

Pt(A(t)) = Pt(Aδk(t)) > P0(A)− 1/k(t),

so lim inft Pt(A(t)) ≥ P0(A). Combining these two inequalities shows that Pt(A(t))→ P0(A). �
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